If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-4.9t^2+27t+35=0
a = -4.9; b = 27; c = +35;
Δ = b2-4ac
Δ = 272-4·(-4.9)·35
Δ = 1415
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(27)-\sqrt{1415}}{2*-4.9}=\frac{-27-\sqrt{1415}}{-9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(27)+\sqrt{1415}}{2*-4.9}=\frac{-27+\sqrt{1415}}{-9.8} $
| (p+3)45=60 | | 1,63q=9.78 | | 5q-5q+2q=16 | | -h+4=-h | | 8x-5x-155=8x+75 | | 4.4r-2.8=1.6r=1 | | 5n-(-30)=5n=7 | | b~3=2.5 | | 2x+1=1482 | | 3y-3=8y-3 | | 2(2.5z+4.5)=19 | | 8x+10-2×=4(×-5) | | -x+8=4+x | | 9=2a+3a=3 | | x+36+65=180 | | A(36)=80-0.25(x) | | 7(v-1)=3v+9-2(-7v-1) | | -13.68-2.1w=15w | | 4(1.3z+1.25)=-15.8 | | 0=7x^2+17x-12 | | p~0.4=1.7 | | 4/3w-12=2/2w | | 15+8x=7x-8x | | x+41+37=180 | | 4x-10+2x=14-21 | | r/19+11=14 | | 9.2(4.7x-3.3)=9x | | (-10u)-(-8u)=-12 | | 45+45+135+135=3x | | 21+b÷2=20b÷3 | | (-10u)-(8u)=12 | | 9r+1=10 |